Drawing Drawing











Anwendungen emergenzbasierter KI
in Produktion und Betriebswirtschaft



Zentrum für Emergenzbasierte Statistik
http://zes.dhbw-vs.de


kuck@dhbw-vs.de

Inhalt

  1. Warum ist eine neue statistische Methodik überhaupt notwendig?

  2. Anwendungsbeispiele zentraler Vorteile emergenzbasierter Statistik

    • 2.1. KnowledgeNets: Gesetze über immer unterschiedliche Raten von Kündigungen
    • 2.2. Ursachenanalyse und Policies: Gesetze über die Konsequenzen der Veränderung von Auswahlregeln
    • 2.3. Multizielanalysen: CNC-Prozessanalyse
    • 2.4. Policies mit den größten Effekten: Dauer der Qualitätssicherung
    • 2.5. KnowledgeWarehouses: Stabilitätskontrolle technischer Systeme

  3. Das Fundament aller Anwendungen: Metagesetze und der Emergente Induktionsschluss

1. Warum ist eine neue statistische Methodik überhaupt notwendig?

  • Unterschiedliche statistische und ML-Verfahren erzeugen aus den gleichen Datensatz unterschiedliche Modelle für dieselbe Größe. Es ist nicht eindeutig überprüfbar, welches Modell und welche Prognose "richtig" ist. Es lässt sich kein widerspruchsfreies "Wissen" generieren.
  • Derzeit verwendete Formen der Relevanzanalyse für einzelne erklärende Variablen basieren meist auf sehr fragwürdigen Metriken und sind nur schwer interpretierbar. Die für die praktische Verwendung so wichtige Interpretation der Modelle als Basis für Ursachenanalysen sind nur sehr eingeschränkt möglich.
  • Sie erzeugen Modelle, die nur als Ganzes zur Prognose verwendbar sind. Eine Weiterverwendung von "Wissensbausteinen" ist nicht vorgesehen.

2. Anwendungsbeispiele zentraler Vorteile emergenzbasierter Statistik

  • Muster sind definiert als Relationen zwischen Funktionen von Sequenzen von Messungen
  • Ein emergentes Gesetz ist eine bisher wahre Allaussage darüber, dass ein "Muster" in Daten bisher immer beobachtet wurde.

Emergente Gesetze sind objektiv, sie machen objektiv überprüfbare Prognosen, sie sind eindeutig interpretierbar und Modelle bestehen aus Wissensbausteinen die vielseitig verwendbar sind.

Was bisher immer so war kann sich nicht widersprechen. Emergente Gesetze erlauben die Generierung von widerspruchsfreiem "Wissen" darüber was bisher immer war. (KnowledgeBases)

Unsere Algorithmen generieren SQL-Datenbanken mit unterschiedlichen Arten von emergenten Gesetzen, die die Vorteile unserer Methodik nutzbar machen.

Use Cases:

  • Analyse von Produktionsfehlern
  • Analyse von Maschinenstillstandszeiten
  • Call-Center-Planung
  • Personalplanung
  • Absatz- und Umsatzprognose
  • Makroökonomische Modelle und Prognosen
  • Erklärbare algorithmische Entscheidungen in Banken und Versicherungen

2.1. KnowledgeNets: Gesetze über immer unterschiedliche Raten von Kündigungen

Beispiel für Gesetze zur Vorhersage von Kündigungen von Mitarbeitern von IBM (34 exogene Variablen).

Drawing

KnowledgeNet:
Menge von im Bezug auf die durchschnittliche Kündigungsrate bisher immer geordneten Auswahlregeln (Pairwise Net).

Ein emergentes Gesetz aus diesem KnowledgeNet:

Beschäftigte

  • auf dem untersten Job-Level (JobLevel==1)
  • die im letzten Jahr Überstunden gemacht haben (Overtime=='Yes')
  • die nicht 3 Trainings im letzten Jahr gemacht haben (~(TraingTimesLastYear==3))

hatten in jeder Sequenz von T=64 Beschäftigen eine größere Kündigungsrate als die Beschäftigten, die mit allen anderen Auswahlregeln im Netz ausgewählt werden.

Die Vorhersage, dass dies auch in der nächsten Gruppe von 64 Beschäftigten wieder so sein wird, gehört zu einer Kategorie von Prognosen, die bisher immer in mindestens 80% der Fälle richtig waren. In der Evaluierungsstichprobe wurde diese Prognose auch bestätigt (Mean (oos) = 0.5>0.4118).

2.2. Ursachenanalyse und Policies: Gesetze über die Konsequenzen der Veränderung von Auswahlregeln

Emergente Gesetze und darauf basierende Prognosen sind vollständig erklärbar. Dies erlaubt Gesetze über die Ergebnisse von "Was war wenn"-Experimenten zur Ursachenanalyse und zur Prognose der Konsequenzen von Handlungen. (Pseudo-Experimente)

Beispiel für Gesetze über die Ergebnisse hypothetischer Experimente über Policies: